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Abstract

Ever since Ang et al (2006) found that idiosyncratic volatility has a negative impact on

returns in data, the relationship between these two factors has been an ongoing controversy. The

linear regression models they favor to analyze this puzzle explain about 5% of the variation in

returns. This paper uses a neural network model to capture more of the variation in returns, and

analyze the role that idiosyncratic volatility plays in predicting asset returns. Fascinatingly, my

�ndings show that while idiosyncratic volatility does improve regression based forecasting, it does

not add value to neural network forecasting. This suggests that volatility impacts forecasting by

re�ecting an important feature of common risk factors that traditional models have yet to detect.

Any unique information contained in volatility is not the reason it's important to forecasting.

This methodology can be applied to evaluate the information composition of other controversial

variables.

Idiosyncratic volatility is a controversial risk factor in predicting stock returns. Within

theoretical discussion, there are two dominant theories for how markets price idiosyncratic risk.

According to the traditional capital asset pricing model (CAPM), investors are assumed to

diversify idiosyncratic risk out of their portfolios. Under this assumption, investors are not
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exposed to idiosyncratic risk and it has no relationship with asset pricing or returns. In practice,

however, many investors can not or will not diversify their portfolios. There are a lot of small

investors�e.g. ordinary households�that do not have enough capital to hold stocks in multiple

diverse assets. Even for larger investors, market frictions and other factors make it costly to

diversify their portfolios completely. Accomodating this fact, another set of theories assumes

that investors are still exposed to idiosyncratic risk, and therefore expect to be compensated for

that risk with higher returns. The idea of higher risk yielding higher return is nice and intuitive,

and most asset pricing theories agree with this premise.

The controversy emerges when analyzing empirical data and the actual relationship between

the two variables. In the regression analysis in Ang et. al. (2006), they �nd higher idiosyncratic

volatility predicts a negative impact on returns. Since negative returns on risk contradicts the

most popular asset pricing theories, there is a large body of literature that attempts to reconcile

their results with theory. Popular explanations emerged based on market frictions, investors'

lottery preferences, and various other factors, but none of these explanations account for the full

puzzle. Even controlling for all these factors together, the anomaly is still present.

Other scholars dispute the existence of the puzzle, and their research confound matters

further. Such papers argue there are �aws in the original paper's methodology, most often

in how they estimate idiosyncratic volatility. Throughout this conversation, they demonstrate

that minor changes in methodology can reverse the volatility-returns relationship or cause it to

disappear, adding yet more uncertainty to the debate.

However, as one overviews the literature, they might notice that all the research uses similar

approaches to each other, and grapples with the same fundamental limitations. Every paper

works with a cross-sectional framework, which is a highly linear and parametrized model. While

those elements make the framework easy to interpret, it imposes limits and demands based

on the functional form of the forecasting model, and thus the information it can capture from
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each variable. For many risk factors, the linear relationship does not inform their full impact

on returns; their relationship is composed more of features such as nonlinearities or interaction

e�ects with other factors. Linear models do not intrinsically capture this information, and can

only include these features if the researcher explicitly speci�es them through an appropriate

term. Ultimately the framework can approximate most important features, but this requires

researchers to understand the underlying model in advance; if the relationship is too subtle or

complex, then the model isn't likely to match the relationship.

Moreover, not every �rm responds to the same risk factors in the same way. Based on their

own history or circumstances, di�erent �rms may be more sensitive to certain risk factors than

others, and have their own parameters as a result. The standard cross-sectional models expect

parameters to be constant across �rms, and their performance su�ers from this restriction. With

so much information hidden from the most popular framework, it could be a poor representation

of how returns work.

My paper aims to use a machine learning approach to evaluate the relationship between

idiosyncratic volatility and stock returns, in an e�ort to shed light on the issue from a di�erent

framework. After an evaluation of di�erent methodologies, I �nd that neural network methods

work best at modeling this relationship, and its strengths complement the traditional methods

nicely. Through a web of interconnected hidden variables, these methods can extract predictive

features without requiring researchers to know them in advance. This enables them use infor-

mation in the data that traditional methods wouldn't be able to access. In cases where complex

or esoteric features are more important to forecasting, machine learning models will do a better

job representing the underlying model.

To my knowledge, machine learning hasn't been used to study the idiosyncratic volatility

puzzle. Though there is a large body of literature on machine learning in economics, the focus

of this work is on its application in forecasting. Rather than using it as a tool for research,
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their endgoal is either to develop the algorithm or evaluate it. The main reason for this is that

machine learning models are di�cult to interpret. In contrast to traditional methods, most

machine learning methods do not include simple to interpret parameters, and do not make their

structure obvious to any observer. For neural networks especially, the web of hidden variables

is nearly impossible to comprehend.

I resolve this issue by starting o� with a simple research question�is idiosyncratic volatility

more valuable to prediction than a white noise variable? Framing it this way ensures I would

only need to evaluate the model's performance, rather than any elements of its structure. I

construct two datasets�one with the full set of control variables/systematic risk factors alongside

idiosyncratic volatility, and one where the latter is replaced with white noise. The performance

of neural network methods is sensitive to the number of input variables, so using white noise

is preferred to removing the variable. By training the neural network over both datasets, I

can compare how well they forecast over novel data and whether the neural network values the

information in idiosyncratic volatility. I perform the same procedure within the cross sectional

framework, to con�rm the general literature's �ndings about the value of volatility.

My main contribution is �nding that volatility does not add much to prediction within

the neural network framework, while it substantially improves prediction in the standard cross

sectional framework. In addition, the neural network can explain over 90% of the variation in

returns, while the cross-section is closer to 5%. This gap shows just how important the di�erences

are between the two model frameworks and the kinds of information they can capture. Namely,

returns cannot be predicted well using only information on the linear relationship between each

risk factor and returns. The vast majority of the explanatory power of these variables is contained

in more complex interactions and features.

The nature of these di�erences also give strong implications about the information compo-

sition of the idiosyncratic volatility variable, and exactly what makes it valuable to prediction.
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Idiosyncratic volatility isn't just white noise�else it would have no value in either framework,

no matter the details in methodology. Nor does it o�er valuable unique information�the neural

network would certainly pick up on that. But recall that linear models can capture more compli-

cated features, as long as they are explicitly speci�ed. If some nonlinear feature of the dataset's

control variables is important, not accounting for it will hurt the model's performance. But by

creating a term to encapsulate the feature, the model can draw a linear connection between that

term and the output variable. This way, specifying features expands the set of information that

linear models can use from the same dataset.

Neural networks are not receptive to the same assistance. By design, they will attempt to

extract every feature of the data provided, testing each of them for importance. So if a researcher

or analyst attempts to include a term to represent some complexity, the neural network will

already be testing that feature. Information stored in complex features are already available to

the neural network�specifying those features is redundant. For its performance to improve, any

new term has to o�er valuable unique information.

Giving how the models' performances changed, adding idiosyncratic volatility does not show

the behavior of adding a new variable. It shows the behavior of specifying a feature. While

the variable certainly contains information not found in common risk factors, that component

doesn't appear to o�er predictive value. Instead, it impacts prediction through a component that

re�ects features of common risk factors. For traditional models, adding idiosyncratic volatility

contributes through these re�ected features, letting it utilize important information it would not

otherwise be able to capture.

Through this process, I �nd that even though machine learning models are di�cult to

interpret, how they respond to new variables can o�er insight on the information composition

of variables. Paired with traditional models, they can demonstrate what makes a variable

important to forecasting and why�does the variable o�er anything unique, or does its composition
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re�ect an important undetected feature of the other variables? Using linear models alone, it can

be di�cult to tell if a variable's contribution re�ects any new information, as the con�icting

volatility literature demonstrates. Making use of machine learning techniques can isolate out

overlapping information, answering this question.

The remainder of the paper proceeds as follows. Section 1 provides a literature overview.

Here I also discuss the common techniques used in the literature, what their drawbacks are,

and how my approach addresses them. Section 2 describes the most relevant machine learning

models, and details how I evaluate each model and choose one to use for analysis. Section 3

describes the data. Section 4 lays out the methodology for goodness of �t testing. Section

5 presents the results, and Section 6 o�ers an in depth discussion of my �ndings. Section 7

summarizes and concludes.

1 Literature Overview

Discussions about idiosyncratic risk begin with the capital asset pricing model (CAPM),

which assumes investors hold diversi�ed portfolios and do not expose themselves to this risk.

Under this assumption, idiosyncratic risk is not priced. Without this assumption, CAPM cannot

predict the e�ect of idiosyncratic volatility on returns; most investors are either unwilling or

unable to diversify their portfolios, so a di�erent model is needed.

Based on an extension of CAPM presented in Merton (1987), most scholars accept the

theory that idiosyncratic risk should be priced, and lead to higher returns. This paper provides

a model for the frictions that prevent investors from diversifying their portfolios, exposing them

to �rm or industry speci�c risk factors. Hence they should demand compensation for this risk,

leading to a positive impact on returns.

Though most theories and models are consistent on this point, empirical evidence is more

dubious about its support. In a landmark paper, Ang et al (2006) performs a cross sectional
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analysis of one-month returns against an estimate for idiosyncratic volatility, and �nds abnor-

mally low returns for stocks with high idiosyncratic volatility. Their �ndings condradict both

the relationship expected with CAPM and the relationship proposed by Merton, presenting an

anomaly.

Followup research attempts to either reconcile these �ndings with the accepted theory or to

discredit their methodology. Barberis and Huang (2008) explore lottery preference of investors:

the idea that investors favor stocks that experience extreme positive returns. Using a model

based on cumulative prospect theory, they demonstrate that positively skewed assets would

have greater value assigned to them than expected utility or CAPM models would indicate.

Bali et al (2010) perform an empirical analysis testing this hypothesis, adding max return

to the regression to represent positive skewness. Similarly, Boyer, Mitton, and Vorkink (2010)

create a model of expected idiosyncratic skewness. Both papers �nd a negative coe�cient of

skewness on returns, and Bali �nds the sign of the volatility coe�cient reverses when max return

is in the regression; over skewness in general, it's instead insigni�cant.

Huang et al (2009) focuses on an explanation based on market frictions: the anomaly tends

to disappear over longer or shorter time frames, suggesting it may be a re�ection of the return

reversal e�ect or slow price movements. They use the previous month's returns as a variable

to capture return reversal e�ect, and use multiple measures of estimated volatility. When past

returns is not in the regression, they �nd these volatility measures generally have negative

coe�cients; controlling for past returns renders them insigni�cant.

To evaluate the overall set of explanations for the puzzle, Hou and Loh (2014) perform

a decomposition analysis over a list of candidate variables. They �nd that variables based on

lottery preference captures 10-25% of the puzzle, variables based on market frictions capture

3-24% of the puzzle, and variables based on other explanations capture 5-10% of the puzzle.
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Collectively, the set of variables accounts for 29-54% of the coe�cient of idiosyncratic volatility

on returns, leaving most of the puzzle unexplained.

One of the more common ways to dispute Ang's �ndings is to examine their method of

estimating idiosyncratic volatility. Fu (2009) observes that their estimate assumes volatility

is a random walk rather than a time varying value. Their own metric estimates volatility on

EGARCH models, and they �nd a strong positive relation between this estimate and returns.

Several studies would since adopt this method of estimating volatility and con�rming their

results.

Later studies question the validity of these results, showing Fu's estimate contains a look-

ahead bias by including returns from month t�which is not available to traders. Guo (2014)

demonstrates with simulated data that this bias can manifest a positive relationship between

returns and volatility that does not exist in the data. Using a variant of the estimator that

only includes data up to month t− 1, they �nd idiosyncratic risk has a negligible e�ect on asset

returns.

Techniques in Literature

In the literature on idiosyncratic volatility, I can identify a couple standard frameworks

used to study the idiosyncratic risk-return relationship�many papers use both of them. Portfolio

analysis draws a broad picture of the impact of a single independent variable on a dependent

one, with some ability to control for other variables. This occurs by sorting �rms in quintile or

decile portfolios along idiosyncratic volatility, then reporting their value-weighted returns. The

researcher can see broad trends in returns based on volatility, without strong assumptions of the

underlying structure.

The method's weakness lies in how it controls for other variables. For example, if they're

controlling for size, they would start by sorting �rms into portfolios along �rm size, then divide
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those portfolios into sub-portfolios sorted by volatility. This is e�ective for one or two variables,

but breaks down for several variables at once. Portfolio analysis depends on having a large

number of �rms in each portfolio, and each control variable shrinks that number of �rms by

another order of magnitude, or sacri�ces resolution if one reduces the number of divisions to

compensate. Ang (2006) handles this by performing this analysis for each control variable one

by one, but would not be able to capture the e�ect of controlling for all of them at once; if

anyone tried, they would only show just how sparse data is over multiple dimensions.

Fama-Macbeth regression �ts the data to a linear model, o�ering a more re�ned analysis

with easy to interpret parameters. This method can typically control for variables by including

them in the regression, and seeing if the coe�cient of volatility is subsumed. Most often,

researchers will run the regression multiple times with di�erent sets of control variables. Adding

more variables does not impact the usable data, so it scales better to more complex environments.

Unlike portfolio analysis, Fama-Macbeth regression imposes a rigid structure on the under-

lying relationships between variables. In particular, it expects parameters to be constant across

�rms. Lorek and Willinger (2009) demonstrate with empirical evidence that coe�cients show

considerable �rm-speci�c variability, and �tting them as if equal loses a lot of performance. In

addition, the method has no intrinsic way to capture complexities such as nonlinearities, time

series correlations, variable interaction e�ects, etc. It's possible to specify elements of those as

variables, but one is unlikely to accurately predict which complexities are involved.

Since the structure of linear regression restricts what it can capture, each study has a

limited view of the relationship between idiosyncratic volatility and stock returns�using the

most generous metrics, each paper's model explains about 5% of the variation in their dependent

variable. Minor changes in methodology�such as di�erent estimates of volatility�can shift which

part of the bigger picture is viewed and draw contradictory conclusions of the same subject.

Much like the proverb of the blind men and the elephant, each paper is working with only a
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small part of the subject, and collectively misses too much to piece them together into a cohesive

whole. A di�erent approach would be needed to gain the bigger picture.

Contribution

The core issue is that linear models have signi�cant limits that interfere with the goal of

modeling returns; linear relationships have trouble explaining most of the variation in returns,

leading to contradictory conclusions. My paper aims to address this by �tting the data to a ma-

chine learning model for analysis, which should provide a more clear image of how idiosyncratic

volatility impacts returns. While there are many types of machine learning techniques, the ones

I'm interested in are supervised methods, matching input variables to outputs with little to

no parametrization. Such techniques are well suited to simulating or forecasting systems with

complex, nonlinear relationships between their variables. This is a much better description of

the system that stock prices exist in, making machine learning models popular for forecasting

applications.

However, while machine learning is a common subject of research and tool in application,

it sees limited use as a tool in research, mainly because it is not easy to interpret how it derives

its output from the input variables. A major bene�t of linear models is that they are easy

to draw conclusions from. Their parametric approach provides simple to interpret coe�cients,

and standard error/signi�cance is usually well understood. In contrast, for machine learning

methods such as those in the neural network family, their nonparametric approach makes the

model infeasible to interpret directly, and in many cases the model itself may be a black box.

While the model will be a much better �t without the misspeci�cation issues of cross sectional

models, one cannot simply look at it and instantly recognize how idiosyncratic volatility relates

to returns.

Hence the driving motivation of this paper is to establish methods for using machine learning

in analysis, and overcome the issues with deriving useful information out of them. Its primary
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contribution will be to evaluate the idiosyncratic volatility puzzle, and whether it continues to

hold when scrutinized without the constraints of linear models.

2 Model Evaluation

Before using the data, I must �rst choose a machine learning method to analyze it through.

I began by selecting a number of candidate models, as well as a selection of benchmark models.

Candidate models are chosen among well-understood machine learning models, that are suited

for forecasting continuous variables. Benchmark models are chosen based on common traditional

techniques used in the literature. These are included to establish whether the candidate models

actually improve prediction over the existing literature's methods, and ensure this investigation

is worthwhile.

Once these were chosen, I simulated several datasets, and evaluated how well each model

forecasted over each dataset. It is crucial to avoid using the real dataset when choosing the

model. If I performed this analysis over real data �rst, then it's probably that one model will

coincidentally �t the data better than others through no merit of its own. Evaluating them over

multiple datasets allows me to judge their average performance over similar data, so erroneous

conclusions are less likely.

That being said, data simulations cannot capture all patterns present in the real data, and

a variety of features and wrong assumptions can render the simulated results a poor re�ection

of the real performance. Hence the conclusions need to be validated over real data. If the

results over both show major discrepancies, then I would have to reevaluate the data simulation

approach.

Models

I choose Ordinary Least Squares as the �rst benchmark model. This is the baseline model

for linear regression, predicting output variables by a linear combination of input variables;
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more formally, it �ts the model ri,t = β′xi,t−1 + ϵi,t. In economics, this is the framework for

most parametric models, re�ned through carefully specifying its input variables and the scope

of accepted inputs�among other possible modi�cations.

In its unmodi�ed state, OLS using pooled data can only capture linear relationships between

variables. As such, I expect it to perform the least well out of all models, which all have ways to

estimate other patterns in the data. This is also the reason I include it in this test�its simplicity

makes it valuable as a lower benchmark for forecasting performance. More sophisticated models

will show improvement only if the patterns they're designed to capture exist within the data. If

there is no real improvement, then the model doesn't work for the data.

Fama-Macbeth is chosen as another benchmark model. This is another linear regression

model, computed in a way that corrects for cross sectional correlations. For every time period

in the data, a linear regression is performed over all available �rms, to obtain a set of estimates

β̂t. Then these estimates are averaged over, to obtain β̂ = 1
T Σtβ̂t. Such a method allows it to

more accurately �t to each cross section within the data, without interference from other cross

sections/time periods.

That being said, ultimately Fama-Macbeth uses the same information set and constraints

as the pooled OLS model. I would expect this to result in similar, possibly slightly improved

forecasts to the pooled OLS model in this application.

Fama-Macbeth is used incredibly frequently in the economic �eld, and as described in

the literature review, is the go-to approach when studying the idiosyncratic volatility puzzle.

The vast majority of research on the topic approach the puzzle by hypothesizing a plausible

explanation, constructing variables to represent it, and performing Fama-Macbeth regression

to determine its relationship with either returns or IVOL, and how much of the coe�cient of

IVOL on returns can be explained by the candidate variable. Hence when choosing among cross
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sectional regression methods, this was the most �tting option, enabling me to use the methods

of previous literature as a benchmark to compare other methods to.

ARIMA is chosen primarily to represent a time series model among the benchmarks. Models

such as these aim to capture time series relationships between a variable and past information,

by using past outputs as another input. These are still easily understood linear models, and

thus are popular in economics research, both for forecasting future outcomes and for drawing

research conclusions. However, their performance scales drastically with the length of time

that data covers�over more limited scopes or with sparse/missing information, the model is not

suitable for use.

By expanding the scope of the model to time series forecasting, ARIMA has access to

a larger pool of information to make each individual forecast. My implementation also �ts

over each �rm's time-series, rather than pooled data, so it's capable of capturing �rm speci�c

parameters. Both of these factors make it likely to perform better than other parametric models

over simulated data. Over real data, the method is far more sensitive to missing observations,

and its performance in the simulations are not likely to be re�ected.

Fama-French is an extension of the CAPM model, which more comprehensively captures

systematic risk. In particular, the three-factor model represents systematic risk through three

variables: market risk premium Rm−rf , SMB�the excess return of small caps over big caps, and

HML�the excess return of value stocks over growth stocks. Due to these properties, this model

is generally only used for prediction over diversi�ed portfolios. It's still useful for �rm-level

analysis�its variables are borrowed and incorporated in other models to represent systematic

factors. In addition, being able to represent systematic risk means variation not explained by

those factors can proxy for idiosyncratic risk�the standard method for estimating idiosyncratic

volatility involves �rst estimating the Fama-French model, then taking the standard deviation

of the residuals.
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Fama-French does support �rm speci�c parameters, but its restriction to systematic factors

makes it use a more limited information set than any other model. Limiting its scope means it

will likely perform better than OLS and Fama-Macbeth, but worse than ARIMA; how much so

is tough to predict.

For an upper benchmark model, I use a semiparametric estimation method from Xiao

(2010) for �rm-speci�c coe�cients. This method of kernel regression models coe�cients as a

function of �rm-speci�c factors�in fact, its assumptions about the underlying structure of the

data is the framework I used when constructing a data simulation method. After all, one of my

primary concerns is that not every �rm has the same response to exposure to risk factors, and

thus are likely to have di�erent parameters. This model simulates that idea nicely. Given the

data simulation is based directly on this regression method, it will probably forecast over the

simulated data better than any other model, including the machine learning models.

Note however that I do not intend to apply this model to real data, and it's disquali�ed as

a �nal model candidate. I know which factor the coe�cients are dependent on in the simulated

data, but that's not information I can be certain of within the real data. Over simulated data

where coe�cients depend on one known variable, its performance will not be representative of

its performance over real data, where determining coe�cients is a higher dimensional problem

over potentially unknown variables. It remains useful to see how this performs as an upper

benchmark, since its performance represents the upper limit for performance in capturing �rm-

speci�c coe�cients. Comparing the performance of each candidate method to the performance

of this method should illustrate how well or poorly they can capture the same feature.

Among machine learning methods, two categories of models �t forecasting the best: decision

tree methods and neural network methods. Decision trees operate by dividing data into branches

based on common patterns, and continuing to divide the data up to some level of re�nement.

The result is a technique that can be applied to both classi�cation and regression, using a
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comprehensible set of rules to match inputs to a classi�cation or output. Sorting the data into

increasingly �ne groups leads to decision trees �tting extremely well to their training data, but

also creates a tendency to capture erroneous patterns, and perform less well out-of-sample.

The variants I evaluate both address di�erent potential �aws in the basic decision tree

algorithm, albeit gaining complexity and losing comprehensibility in the process. Random forests

assume that on average, any single decision tree will get the right results, and wrong predictions

can be attributed to random noise. So the method �ts multiple decision trees, and takes the

average of their predictions as the predicted output. If their assumption is correct for the dataset,

then the majority of trees should give the correct prediction for any given input, suppressing

the e�ects of over�tting.

Gradient boosted trees instead assumes that any errors in forecasting will be consistent

across estimations, and wrong predictions need to be corrected for. To improve its estimate,

gradient boosted trees work incrementally�after estimating an initial model, it runs the data

and obtains the model's residuals, and �ts another tree to the residuals. Doing this repeatedly

should cause the �nal model to converge to an optimal decision tree, overcoming any sources of

consistent errors.

Based on performance in general forecasting applications, I anticipate these models to per-

form best and most consistently on both real and simulated data. However, it's much tougher to

predict which of the two will perform better compared to the other. Both make di�erent assump-

tions about how basic decision trees perform on the data�random error or consistent error�and

it's di�cult to determine ahead of time which assumption is more correct for a particular dataset.

Neural network methods are well suited to nonparametric problems. In general, these

methods operate by creating hidden layers of variables between the inputs and the outputs.

Cells in each layer are connected to a set of cells in the previous layer, and derive their value

from some nonlinear function of the connected cells. This structure allows them to capture
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and mimic nearly any complex relationship between inputs and outputs, making them useful in

contexts where an explicitly de�ned algorithm is impractical. Conversely, the complexity of the

network and its connections makes all such models a black box.

Recurrent Neural Networks in particular show a lot of potential in modeling time series

data, and is included as a candidate for this reason. In an RNN, information is processed one

time period at a time, and cells are set up to remember previous values they've taken. By

letting each cell use their previous states as inputs, RNNs can capture sequential and time series

relationships and patterns. Hence they work particularly well in applications such as time series

prediction and text analysis, where the sequence contains most of the meaning.

LSTM networks are a variant of RNNs designed to address the vanishing gradients issue.

Each cell retains information it comes across�more similar to memory than observation�and is

trained to decide under what conditions it will drop that information. In cases where there

are major gaps between important, impactful events, LSTM networks can remember them for

longer and continue to factor them in predictions.

The data simulation method does not focus on the impact of big events, so RNN and LSTM

are likely to perform similar to each other. However, major events can have long term impacts

on stock returns in real data, persisting past the point when input variables revert to normal.

So over real data, I would intuit that LSTM is better suited to prediction.

Both decision tree methods and neural network methods show consistently good perfor-

mance in application, and it's di�cult to anticipate which of the candidate machine learning

models will perform the best.

Methodology

For the Monte Carlo design, I set up a data generating process to generate 240 time periods,

8000 �rms, and 8 input variables xi,t−1 with one output variable ri,t. Half of these variables
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follow a moving average, while the other half are distributed independently from previous time

periods�this introduces a feature where only some variables have moving-average properties.

More importantly, each �rm is assigned a value zi that is constant across time, and the coe�cient

for all input variables is a function of this �rm-speci�c value β(zi). Output is then de�ned as a

linear combination of these variables ri,t = β(zi)
′xi,t−1+ϵi,t, where ϵi,t is an error term following

a standard normal distribution.

This data generating process focuses on simulating �rm speci�c coe�cients based on observ-

able variables. It is possible to include other features such as more overt nonlinearity or cross-�rm

correlation, but it's also theoretically possible to account for them with a broad enough set of

terms in a linear model. Hence the standard models in literature can contextualize them�the

same does not apply to �rm speci�c parameters, so I'm more interested in how each model

performs with this feature.

Each dataset is divided such that the �rst 180 time periods are used as training data, while

the last 60 are used as a validation set. The training set is used to calibrate each benchmark and

candidate model, then each model is tasked with forecasting over the validation set. Comparing

the forecasts to the actual outputs, I compute mean squared error and mean absolute deviation

measures to evaluate out of sample performance. While mean squared error is a reliable and

more commonly used performance measure, it does have issues of excessively weighing outliers.

Hence I make use of mean absolute deviation to validate its results.
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Results

Simulation Study Results MSE MAD

OLS 1.647 1.018

(.008) (.002)

Fama-Macbeth 1.647 1.018

(.008) (.002)

Fama-French 1.506 .976

(.006) (.002)

ARIMA 1.071 .826

(.003) (.001)

Kernel Regression .999 .798

(.002) (.001)

Random Forest 1.487 .970

(.005) (.002)

Gradient Boosted Tree 1.210 .878

(.003) (.001)

RNN 1.067 .824

(.0314) (.012)

LSTM 1.020 .806

(.003) (.002)

Over the simulated data, mean squared error and mean absolute deviation corroborated each

other�sorting candidate models by either measure results in the exact same order. Additionally,

results are remarkably consistent between datasets, with very little standard deviation in MSE

and MAD for all models. The only exception to this is in RNN, whose standard deviation for

both values is �ve to ten times higher than that of other models.

Neither OLS nor Fama-Macbeth have any way to accommodate for �rm speci�c parameters,
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which is an important element of the simulated datasets. Consequently, they perform very

similarly as the worst performing models. Just ahead of them, Fama-French does allow for

�rm speci�c parameters, but uses very limited information to forecast. This leads to better

performance than the lower benchmarks, but worse than any other model.

The most surprising result here is random forest, which only slightly outperforms Fama-

French. This contrasts against the performance of gradient boosted trees, which is much more

accurate. Given the di�erence between the two styles, overall this suggests that decision trees

face consistent errors when �tting over this kind of dataset, and noisy errors is less of a relevant

issue.

As expected, kernel regression performs the best over simulated data; this is not likely to be

the case when evaluated over a dataset not tailored to it. Of more interest is how the performance

of other models compares to it, and if any come close to the same e�ciency at forecasting with

�rm speci�c coe�cients. Indeed, LSTM comes very close to the same performance, without

requiring identifying which variables the coe�cients depend on in advance. RNN shows similar

e�ectiveness, and narrowly beats out ARIMA�which is also pretty well speci�ed to the problem.

This shows that the neural networks perform nearly as well as a regression model tailored to the

underlying distribution.

3 Data

I choose to analyze NYSE, AMEX, and Nasdaq stocks over the period from January 2000

to December 2020, spanning 21 years and 252 months. Monthly stock returns data are obtained

from CRSP.

I include Fama-French variables Rm − rf , SMB,HML, downloaded from Kenneth R.

French's website.

Other variables I use include systematic risk BETA, �rm size, book-to-market ratio, liq-
19



uidity measures in turnover and its coe�cient of variation, momentum e�ects, and idiosyncratic

volatility. Each of these need to be calculated or estimated from other variables.

Firm size is set as market value of equity ME, calculated as the product of monthly closing

price and outstanding share numbers (found in CRSP data).

Book-to-market BE/ME is yearend book value of common equity divided by yearend mar-

ket value of equity. Annual book equity is obtained from COMPUSTAT data.

Turnover for a given month is calculated as trading volume divided by number of shares,

and the variable TURN used in the forecast is the mean turnover over the prior 36 months.

CV TURN is the coe�cient of variation of that same set of turnovers.

Momentum e�ects are captured by geometric average of returns from month t−7 to month

t−2; once again I added 100 to average over a multiplier rather than a rate, as geometric average

doesn't work for zero or negative values.

Since it's designed to capture systematic risk and ignore idiosyncratic risk, BETA is more

precisely estimated over diversi�ed portfolios than individual �rms. As such, I use Fama and

French (1992)'s method to estimate this variable. For each �rm-month I use the previous 60

months to estimate ri,t = α + β(Rm − rf )i,t + ϵ, assigning a pre-ranking β to each stock.

Then I assign stocks to 10x10 portfolios based on size and β deciles, with portfolios updating

every month. On each portfolio, I estimate the full time-series regression of equally-weighted

portfolio return on value-weighted market return and its one-month lagged value: EV RETp,t =

a+ b0,pVWRETt+ b1,pVWRETt−1+ ϵ. Portfolio beta is estimated as BETAp = b0,p+ b1,p, and

assigned to every stock in the portfolio.

It is not possible to observe idiosyncratic volatility directly, so this variable needs to be

estimated. Fundamentally, this is done by isolating the e�ect of systematic factors and seeing

what variance remains in the returns data. This means that any estimator will work within some
20



model framework, and thus the key variable cannot be entirely independent of existing models.

Regardless, the estimator should still be a good proxy for the real value, and any changes to

its value should re�ect di�erences in the true idiosyncratic volatility. I will keep in mind the

potential for the estimation method to introduce artifacts, but I'm still con�dent in its results.

With this in mind, I choose to use the estimator AHXZ (2006) uses, which most other

authors continued to use; this serves to make the data and results of the study more directly

comparable to previous literature. Daily returns data is obtained from CRSP, and daily Fama-

French factors are obtained from Kenneth R. French's website. In each month, daily return

of individual stocks are regressed over the daily Fama-French factors, obtaining residuals after

systematic risk is accounted for. Idiosyncratic risk is calculated as the standard deviation of

those residuals. I exclude months with fewer than 15 trading days, to avoid any e�ects of

infrequent trading.

Validation

Empirical Data Results MSE MAD

OLS .0210 .0843

Fama-Macbeth .0248 .0944

Fama-French .0227 .585

ARIMA .0306 .0613

Kernel Regression .0208 .0840

Random Forest .0203 .0850

Gradient Boosted Tree .0185 .0808

RNN .0189 .0675

LSTM .0189 .0674

When I look at each model over this data, di�erences in performance show how elements

absent in the simulated data can change the outcome. Most saliently, kernel regression performs
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worse than any of the machine learning models. Unlike the simulated data, the real data has

features it cannot capture such as nonlinearities; additionally, coe�cients are likely a�ected by

multiple factors, not all of them identi�able. Xiao (2010) uses �rm size, and my implementation

follows suit.

As expected, despite kernel regression performing the best over the Monte Carlo study,

it's not feasible to get the same performance for real data. It maintains a restriction to linear

relationships, and one can't perfectly identify the factors a�ecting coe�cients in a real complex

system the same way they can in a simulated system. So the performance here validates my

decision to disqualify kernel regression from being the �nal model.

ARIMA's performance is hurt the most: this can likely be credited to the data showing

variable timespan for each �rm. The performance of time series regression scales heavily to

timespan, and few �rms are open for the entire period. I did not attempt to simulate missing

data or variable timespans in the data simulation method, so the results line up with the expected

contrast between datasets.

Looking only at MSE, gradient boosted trees are the best performing model on real data.

It also shows signi�cantly worse MAD, so I can't claim it performs strictly better than the

neural network models. I choose not to take this as a strong indicator of a discrepancy with the

simulated data, though it's certainly a complication.

Based on the results of the simulation study, and the validation against real data, LSTM

network work best for forecasting data when �rms may respond di�erently to exposure to the

same risks. For this reason, I choose to advance my analysis analysis using LSTM networks.

22



4 Goodness of Fit Testing

Research Question

Though I've selected a model that should �t the data well, using it for evaluation is not a

simple task. In contrast to parametric models such as Fama-Macbeth, neural network models

such as LSTM are essentially a black box, and does not o�er simple parameters to interpret.

So to use the model for evaluation, I start with a modest research question�does idiosyncratic

volatility have an impact on stock returns? If I can prove there is an e�ect in this framework,

then I can move on to evaluating what that e�ect is.

In principle, goodness of �t R2 can be used to answer this research question. R2 only requires

predicted values and real values of the output variable to be calculated, and does not depend

on any elements of the model's structure. Hence by comparing the �t of a model without the

principle variable, and the �t of a model with this variable, I can determine whether its addition

adds anything to the prediction.

Analyzing goodness of �t will allow me to draw a conclusion from the model without needing

to scrutinize the neural network too closely. If I do determine that idiosyncratic volatility is

valuable, then the followup would be what kind of e�ect it has on stock returns�positive or

negative. This would certainly require a more in-depth analysis of the �tted model, but is

irrelevant if volatility has no e�ect.

Methodology

The central approach is to �t the LSTM model over the two datasets, and compare their

R2 values. However, it is not as simple as removing the principle variable to create the control

dataset. When I've done this, the result is a consistent increase in out-of-sample R2, despite

having less variables and information to work with. This even applies when the principle variable

is unambiguously important to prediction, such as any of the Fama-French factors.
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For machine learning methods, over�tting is a perpetual concern. While great at detecting

patterns in data, these methods have trouble recognizing erroneous patterns and eliminating

them from the model. Many factors impact the magnitude of this e�ect, but one of them is

number of variables. When more variables are in the dataset, over�tting becomes a stronger

concern. More often than not, this leads to seemingly poorer out-of-sample performance, as the

results indicate.

The standard way to address this factor is to prune the set of variables, and several algo-

rithms have been developed for determining which variables to keep and which to drop. However,

our aim is not prediction, but analysis, and pruning variables would hamper that purpose. For

prediction, maximizing performance is the main concern; for analysis, it is more important to

keep the models comparable to each other. Using an algorithm to prune variables means drop-

ping several control variables and not capturing their contribution in analysis. More notably,

it is not likely that both datasets will end with the same number of variables, so over�tting

pressure will still not be the same for both models.

Ultimately to solve this issue for analysis, I reasoned that rather than minimize this pressure,

I should aim to keep it equivalent between both models. So I construct two datasets with the

same number of variables: a dataset that contains both the control variables and the principle

variable, and a control dataset that contains the control variables and a uniformly distributed

white noise variable. Over�tting concerns from number of variables will impact both models

in exactly the same way, so all di�erences in performance will be related to how the principle

variable and the white noise variable a�ects forecasting. This reframes the question as "does

idiosyncratic volatility add more to the prediction than a white noise variable?"

In addition, I also �t the datasets over two benchmark models in Fama-Macbeth and OLS.

This is primarily to replicate what other papers have done over my dataset, ensuring there's no

quirks in the dataset or problems introduced by the methodology. It would also help present a
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contrast with the results through machine learning.

Worth noting is that data is split into two groups: a training dataset covering the �rst 3/4

of the data, and a testing dataset covering the last quarter. For both the LSTM models and

the benchmark models, the training dataset is used to �t the model. Testing data is used to

evaluate out-of-sample performance where relevant.

5 Results

E�ciency Gain

LSTM Fama-Macbeth OLS

Testing R2 Mean R2 Sample R2

Control .9066 .0469 .0082

IVOL .9076 .0523 .0086

While all models use some variant of R2 to evaluate their performance, di�erent charac-

teristics prompted me to abandon a uni�ed approach. If I choose one of the given measures to

compare each of their performances, invariably it will clash with some property of another model,

typically under-representing their accuracy. As such, for each model I choose an approach that

best re�ects their performance, and evaluate their e�ciency against each other in broad strokes.

OLS uses the default method, calculating the R2 value over the same sample it was �t

over. When I evaluate it over the testing set instead, R2 tends to be a negative number, which

de�nitely does not re�ect its accuracy.

Since Fama-Macbeth focuses on �tting to each cross-section�taking the average only to have

an aggregate parameter�its performance is best measured by its �t to each cross-section. As

such, most of the existing literature uses mean R2. To calculate this measure, as one �ts the

cross-section they would evaluate its R2. Then once all cross-sections have been �t, one would
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take the mean of the collection of R2 values. This is the ideal way to evaluate the performance

of cross-sectional models, but is completely inapplicable out-of-sample. Additionally, it serves

no purpose with any other kind of model.

Uniquely, LSTM should not be evaluated with in-sample measures. Machine learning models

in general �t very aggressively to their training sample, and require measures to limit over�tting

and avoid catching erroneous patterns. Consequently, in-sample R2 would over-represent its

e�ciency. I instead use the model to predict over the testing data, and calculate out-of-sample

R2 using these predictions. This evaluates how well the �tted model performs in a more general

context, and best re�ects its e�ciency.

Comparing the machine learning model to the standard models, the results are striking.

The LSTM network explains more than 90% of the variance of returns in the testing data, while

Fama-Macbeth explains closer to 5% of each cross-section's variance. This suggests that LSTM

captures a lot more of the information contained in the data than Fama-Macbeth does, and its

results would be more re�ective of the underlying reality.

Fundamentally, Fama-Macbeth is more limited in what kind of information it can capture.

It and many other standard models are linear models, and only capable of capturing linear

relationships. This can be cheated through functional forms, either reworking a model into

linear terms or adding variables to explicitly capture speci�c relationships�such as interaction

terms. However, this only works for patterns and relationships one can anticipate; unknown or

unanticipated patterns will not be captured.

LSTM and most machine learning models make no assumption about the underlying model.

The way they are constructed, they can simulate many kinds of relationships between variables in

di�erent formats, without needing them explicitly de�ned. So any di�erence in their performance

would depend on how much of the underlying relationships rest in more complicated patterns,

versus linearity.
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This �nding clari�es and explains why the literature on the idiosyncratic volatility puzzle

shows such contradictory results. The di�erence in performance suggests that most of the

variation in returns can only be explained by features that linear models cannot detect, and thus

the linear model is a poor �t for the problem. So the best each paper can work with is a linear

approximation of a nonlinear relationship. Due to the mispeci�ed model, each study can only

see part of the relationship, and minor di�erences in methodology leads to them seeing di�erent

parts of it from each other. It's entirely likely that with their di�erences, one approximation

will �nd a negative coe�cient, while another would �nd a positive coe�cient. Contradictory

outputs are expected within a mispeci�ed framework.

Idiosyncratic Volatility

While R2 increases by a lot for Fama-Macbeth, the same does not apply to LSTM. Under

a model that better re�ects the data, idiosyncratic volatility provides roughly the same value

for prediction as a white noise variable. Contradicting the bulk of the literature around this

variable, these results suggest that idiosyncratic volatility has no intrinsic relationship with stock

returns.

What is likely occurring here is a story of three factors: the information contained in

each variable, the information that cross-sectional models are capable of capturing, and the

information that neural network models are capable of capturing. In this tale, idiosyncratic

risk carries information about the stock, but this is not information unique to it. Rather, this

variable re�ects information derived from other variables, moving with and summarizing them

in some nonlinear relationship.

In the linear models that most research relies on, it is possible to capture the e�ect of

nonlinear interactions on the dependent variable, but only when it's explicitly speci�ed as a

parameter. So when the model excludes idiosyncratic volatility, it can capture the direct linear
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e�ect of its control variables, but not the impact of more complex interactions. Adding idiosyn-

cratic volatility expands the model's framework, letting it capture more information about its

component variables and improve the performance of its predictions.

Neural networks are designed to seek out any kinds of patterns or relationships in the inputs

that can be used to predict the output, without any need for parametrization. This occurs by

creating several layers of arbitrarily many nodes. Each node looks at a subset of nodes or

variables in the previous layer, and represents one possible interaction or feature of that subset.

Through this design, neural networks aggressively capture interaction e�ects between variables

and other types of complexities.

With a large enough web of connections, neural networks can incorporate most possible

con�gurations of the provided variables. One can surmise that if a candidate variable can be

derived from other inputs, then at least one of the nodes would be analyzing a nearly identical

term. Whether or not it's provided the candidate, the model captures and uses the same

information. In both scenarios, the model would perform the same; we can conclude a variable

is redundant if it does not o�er relevant unique information.

Between these three factors, it is likely that idiosyncratic volatility does not o�er valu-

able unique information, but does represent some complex relationship between the standard

predictors. When controlling for those other variables, cross-sectional models gain the ability

to capture those complexities, and improve their performance through the broader framework;

machine learning methods naturally capture those complexities without assistance, and gain

nothing without unique information. Hence rather than directly providing information on stock

returns, idiosyncratic volatility can elucidate the e�ects of other variables through its nonlin-

ear relationships with them; in nonparametric prediction, this variable can only reveal what it

already knew.

To illustrate how this can occur, let's construct a simple example. Suppose we have two
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control variables a and b, an experimental variable x, and a dependent variable y. Let's de�ne

the underlying relationship with the following model.

y = β1a+ β2b+ β3x+ ϵ

Now suppose that x is not independent of the control variables, but in fact de�ned entirely

from them. Let's present this as some nonlinear equation

x = γ1a+ γ2b+ h(a, b)

With the underlying relationships established, suppose a researcher is trying to �gure out

whether x improves their ability to predict y. Let's analyze what will occur when they work

within a linear framework. They would be �tting the data to the following two models, and

comparing their performance.

y = β̂1a+ β̂2b+ u

y = β̂1a+ β̂2b+ β̂3x+ u

To show how the �rst model will �t, let's reframe the underlying function for y strictly in

terms of a and b.

y = (β1 + γ1)a+ (β2 + γ2)b+ h(a, b) + ϵ

Based on this function, E[β̂1] = β1 + γ1, and E[β̂2] = β2 + γ2, but the model will have no

way to capture the variation in y explained by h(a, b). Hence this component will be a part of

the error term, and reduce the performance of the �rst model.
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By adding x to the second model, h(a, b) can be captured in the estimate, so this nonlinear

component can be used to predict the value of y. Hence despite containing no new information,

x is valuable to prediction within a parametric framework.

Now keeping the underlying model the same, let's analyze how a simpli�ed neural network

will approach �tting y against a and b, and how much of the variation it explains. Setting one

hidden layer of nodes between the inputs and the outputs, this layer will generate an arbitrary

number of variables as functions of the input nodes, and some weight assigned to each of them.

{vi = fi(wiaa,wibb)}i∈I

Each of these variables is then assigned a weight and used as inputs for another function,

from which the output is predicted. For simplicity, let's present this as a linear combination.

y = Σi∈Iwivi

When assigning and adjusting weights across both sets of interactions, the neural network

will recognize most of these hidden variables hold no explanatory value, and assign them a weight

of zero. However, some of these variables will capture patterns in the underlying relationship,

and the neural network will make use of these. It's likely that one of these variables�call it

vh�will be equivalent to the nonlinear component of x; another two variables�va and vb�will be

equivalent to a and b.

va = a, vb = b, vh = h(a, b)

y = waa+ wbb+ whh(a, b)

Hence over the process of �tting y over a and b, the neural network will capture the impor-

tance of this nonlinear interaction between the two control variables without assistance. In a
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model where x is included, the neural network can only reach the same result, and the variable

adds no power.

There's a more general case where the estimate for idiosyncratic volatility contains two

components: information unique to the �rm or industry, and information based on the more

common risk factors. Based on how the neural network operates, it will improve its performance

if the former component is related to returns, but not the latter component; linear models will

respond to either component. If both components were valuable, then it would be re�ected in

an improvement in both models. If neither component was valuable, then neither model would

improve with volatility included. Since the neural networks did not respond but the linear

models did, it suggests that only the common risk component has any relationship with returns.

One could argue that since volatility is estimated through the other variables, this �nding

only applies due to using an estimate. Potentially, the reason volatility looks like it re�ects

other variables is because it can't be directly observed, and the variable in the regression truly

is a re�ection of other observable variables. However, this is not likely to be the case here. The

estimator used in Ang et al (2006) uses daily returns data rather than monthly returns; the

model is not trained on daily data nor can it accept it as an input. So if the model treats it as

a function of other variables, it's not for reasons intrinsic to the estimator.

Overall, these �ndings elucidate how idiosyncratic risk contributes to returns prediction,

and it's more complicated than additional information. Common risk factors have a number

of features that are important to their relationship with asset returns. However, most of these

features a�ect returns in a nonlinear manner, which can't ordinarily be captured by traditional

linear models, so we only see part of the whole story. Idiosyncratic volatility mitigates this by

encapsulating some of these important features, presenting it in a way that linear models can

forecast with. By doing this, traditional methods can access more of the information in common

risk factors, ensuring a better �t than if the variable was excluded. Despite lacking unique infor-
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mation, idiosyncratic volatility is still valuable for re�ecting undetectable information. Without

the variable, the model su�ers, losing insight on the features it encapsulates.

6 Discussion

Neural network methodologies are notable in how they do not require any model speci�-

cation to function. As described previously, �tting a model using a neural network prompts

it to test a complex network of patterns and features in the inputs, and how/if each of those

features impacts the output variables. Hence by its process of training, the neural network will

determine the structure of the relationships on its own�or at least a close approximation.

Due to this nature, a neural network's performance depends on two main factors: how much

information it has, and the quality of the information. If the model learns from a biased dataset,

it will internalize those biases, skewing its conclusions. So for best results, one would have to

make sure they don't introduce any biases in the ways they construct their datasets or collect

data. More important here is the issue of how much information it has. Neural network models

are good at extracting most of the usable information in any variable or set of variables, but

it won't be able to conjure up information that isn't present in any of its input variables. If it

were asked to classify images, then only given the image size as inputs, it will not give useful

results. Ultimately what matters to it is how much information its input variables covers, and

its performance will be a�ected if some form of crucial information fails to be contained within

the variable set.

For more traditional forms of modeling, it's vital to make the right assumptions about the

structure of the underlying model. The researcher has to specify what ways their input variables

can impact the output variables, and which features to pay attention to. If an input has a strictly

linear impact on the output, linear regression methods will have no trouble �tting the relationship

accurately. But more often, the underlying structure is more complicated than a system of linear

relationships�a linear regression cannot properly capture diminishing or escalating returns, or
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any interaction e�ects of complimentary inputs. This changes if the researcher already knows

to look out for those features�functional forms such as logarithmic transformation or additional

summary variables will frame nonlinear features in a way that linear regression can capture.

So if the structure is known in advance, regression methods do a good job at �tting data and

predicting how various risk factors a�ect returns.

The problem is that it's very di�cult to know which features and structural elements to

look out for in advance. While elements such as diminishing returns can be obvious, there are

a lot of risk factors that can interact in a multitude of complicated ways. With a complicated

system, several of these interactions will be impactful, but a person wouldn't have a way of

telling which of the many possible interactions should be checked for. Hence in a circumstance

where most available information can't be used, the model's performance is more impacted by

how much information its input variables can communicate�in linear fashion�than how much

information they contain. As far as linear regression is concerned, information being obfuscated

is just as bad as it being missing.

In short, the neural network's goodness-of-�t corresponds to the total explanatory power

of the input variables�with all of their features. The regression's goodness-of-�t corresponds

solely to the explanatory power of the input's linear features�along with any explicitly speci�ed

elements. Looking back at the empirical results, a linear relationship between risk factors and

returns only explains about 5% of the variation in returns, while a nonparametric model lets

them explain about 90% of the variation in returns. This vast di�erence illustrates just how

much information is concealed by model misspeci�cation issues. Here the standard risk factors

contain an impressive amount of information about asset returns, enough that when all the

information is captured and used, only 10% of the variation in returns still needs explaining.

But only about 5% of that information is accessible through linear regression�the rest can only

by found in other features of the underlying model. Understanding the relationship between
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risk factors and returns will require understanding which features make up the remaining 95%

of the explanatory power.

Idiosyncratic volatility is important to traditional modeling, precisely because it exposes

one of these hidden features. Regardless of whether it contains any unique information, it does

represent some interaction between common risk factors. Looking at the Fama-Macbeth results,

mean R2 rises from .0469 to .0523 when this variable is added. This improvement suggests that

the feature this represents is an important element of the underlying model, enough to improve

prediction by over 10% when it's speci�ed in the linear framework.

That being said, such an element is less valuable to neural network models. By their

nature, neural network models test every possible feature of their inputs, in order to extract as

much information out of them as possible for prediction. This means that whichever feature

idiosyncratic volatility captures, the neural network already tests for. So if volatility can't o�er

unique information, its contribution is redundant with the e�orts that the neural network already

makes. My results shows that adding idiosyncratic volatility to the set of inputs has the same

e�ect as adding a white noise variable. So idiosyncratic volatility does not expand the total set

of information; anything it o�ers can be derived from the other risk factors.

To summarize, the neural network results show that idiosyncratic volatility does not con-

tribute any unique information, and can only contribute through unearthing information that

other models didn't detect. Fama-Macbeth results show that it does have a big contribution, and

therefore reveals an especially important feature of common risk factors. Rather than acting as

an independent variable, it becomes a vehicle for making the linear model more closely speci�ed

to the underlying structure of the data.

This opens up more questions about precisely which feature it's re�ecting, as idiosyncratic

volatility isn't intended to relate to common risk factors at all. After all, idiosyncratic volatility

is meant to represent �rm or industry speci�c risk factors, isolated from risk factors shared by
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everyone. Properly speaking, a �rm's actual idiosyncratic risk has no relationship to common

risk factors, and presents purely unique information. If we accept this to be true, then the

important feature must be a consequence of the popular estimators for idiosyncratic risk. The

method popularized by AHXZ (2006) uses Fama-French factors to represent systematic risk

and isolates its e�ect on volatility; this has the potential to leave in elements from the other

common risk factors. And regardless of choice of variables, most alternative estimators assume

a linear model of returns forecasting when identifying how much risk is systematic. Hence when

making these estimates, only the linear features are removed. All more complex elements of the

risk factor-return relationship�nonlinearities, interaction e�ects, etc.�remain embedded in the

estimate for volatility. The �nal variable will be e�ected by a mixture of these complexities that

the base model could not capture, and genuinely unique risk factors. And for traditional models,

the �nal impact on performance from idiosyncratic volatility will represent the combined e�ects

of these two elements.

This applies in the traditional model because it does not intrinsically capture either of these

features, but the same does not apply to neural network models. It is already going to factor

any complexities within common risk factors into its predictions, so the only contribution it will

detect is that of genuinely unique risk factors. And since the neural network did not detect any

worthwhile contribution, this element does not appear to hold value. So if unique risk factors

don't explain returns, but the estimate for idiosyncratic risk does, then the IVOL variable only

contributes through the elements it manages to capture from common risk factors. That it

contains these elements at all amounts to a quirk in estimation.

So ultimately the variable improves forecasting by helping the linear model more closely

match the underlying structure of returns forecasting. Many important elements of common risk

factors will not be re�ected in a linear model�estimated idiosyncratic volatility includes them

in the model in a similar way to explicitly specifying them. Ultimately, it's suggestive of how
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important the element is, and how much weaker the model is for lacking it.

This explanation also can explain the inconsistent results in the greater body of literature.

Though Ang's research popularized their way of estimating idiosyncratic risk, many other re-

searchers favored di�erent methods, with variations in the method or broader disagreements in

what constitutes systematic risk. As such, each estimator likely captures or emphasizes di�erent

features of common risk factors. Some of these features will be more important. Some will be

less important. Some will have a positive e�ect. Some will be negative. The results of the study

can vary wildly, depending on which features its estimator or dataset ends up emphasizing;

inconsistent results are to be expected.

Studying variables through neural network modeling is valuable for detecting cases such

as this. Though its black box nature makes it less ideal for research, it responds di�erently

to new information in ways that can reveal how and why a variable is important. Since it's

only sensitive to unique information, it can verify whether the variable of interest adds anything

unique, or if its value can be derived from other variables. The latter case would suggest that

something signi�cant is missing from the model.

7 Conclusion

In this paper, I analyze the relationship between idiosyncratic risk and stock returns by

�tting monthly returns data over a neural network model, as well as a cross sectional model.

Through comparing the predictive performance of both models with volatility vs a white noise

variable, I quantify how much information each model extracts out of the same dataset, as well

as how much information is provided by idiosyncratic volatility. Over the most appropriate

goodness of �t estimators, LSTM explains approximately 90% of the variation in returns, while

the traditional Fama-Macbeth model explains closer to 5% of the variation. This shows that

most of the information useful to returns forecasting cannot be captured through linear methods,

and is instead composed of more complex features.
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My results show that idiosyncratic volatility only performs as well as a white noise variable

in LSTM�a �nding that contrasts against the results in most of the past literature, as well as my

own �ndings over Fama-Macbeth. This behavior is less consistent with a new useful variable,

and more similar to the results of specifying a feature of the dataset. Hence the value of volatility

lies in its re�ection of some important feature of common risk factors, that has not otherwise

been detected.
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Appendix A

To implement neural network forecasting, I made use of Python's tensor�ow package. The

model is constructed with 4 LSTM layers of 50 units/cells. Between each LSTM layer is a

dropout layer set to randomly ignore 20% of outputs/nodes during training. This is a measure

against over�tting�each time the network updates, the dropout layer conceals a portion of the

preceding layer from the following layer. As the following layer updates its weights, it evaluates

itself against a random portion of the previous layer, with this portion changing with each

iteration. This reduces the chance of the network focusing too much on erroneous patterns

during training. Naturally, dropout layers are not used during forecasting.

The model's structure is capped with a one unit dense layer, generating an output from

the network of hidden variables. Once the model is constructed, it is then compiled and trained

using the "adam" optimizer and the mean squared error loss function. This network is trained

over 50 iterations/"epochs".

Appendix B

The goal of the Monte Carlo simulation was to generate datasets with a set of speci�c

features in order to test how well each candidate model forecasts over these features. Speci�cally,

the dataset should include �rm speci�c coe�cients, and variables with varying distributions and

time-series properties.

In the �rst time period, x1, x2 ∼ N(0, 1), x3, x4 ∼ U(0, 1), x5, x6 ∼ U(−1, 1), x7, x8 ∼

Binom(.5) for each �rm. In following time periods, x2, x4, x6, and x8 follow the same distribution�

independent from previous time periods�while x1, x3, and x5 follow a moving average of xj,t =

.9xj,t−1 + .1ϵj,t where ϵj,t has same distribution as xj,0. Similarly, x7 is assigned a 90% chance

of staying the same in the next time period. This construction captures some of the com-

mon variable distributions in the data, and creates a feature where only some variables have
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moving-average properties.

Each �rm is assigned its own constant value zi ∼ U(−1, 1), which is used to assign coe�-

cients for each variable for each �rm, using the following underlying formulas.

� β1(zi) = ln(2 + zi)

� β2(zi) = z3i

� β3(zi) = −e−zi

� β4(zi) = cos(πzi)

� β5(zi) = −zi

� β6(zi) = sin(5πzi + .25π)

� β7(zi) = .4

� β8(zi) = −.4

Output is then calculated via ri,t = β(zi)
′xi,t−1 + ϵi,t, where ϵi,t follows a standard normal

distribution.

This data generating process is used to simulate 10 datasets, each providing their own

evaluation of every candidate model. Accuracy of each model is measured with MSE and MAD

over each of these datasets, then I take the mean and standard deviations of these measures to

judge their overall performance.
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